AUTHOR	Anderson, G. Ernest, Jr.
TITLE	Heuristics: A Step Toward Getting There.
PUB DATE	Apr 71
NOTE	$24 p$.
EDRS PRICE	MF- $\$ 0.65$ HC- $\$ 3.29$
DESCRIPIORS	*Computer Programs; *Educational Planning;
	*Information Processing; Linear Programing;
	*Management Systems; *Problem Solving; School
	Planning

ABSTRACT
This paper describes a series of heuristic approaches to helping schools analyze problems by the use of a teletype time-sharing computer terminal. The examples detailed include 1) a Delphi exercise for students; 2) a budgeting model which examines the results of various levels of funding and of changes of relative priorities; 3) a school redistricting problem which was formulated as a linear programming problem to provide the best cossible solution within existing constraints; 4) an analysis of data to provide the optimum use of facilities; and 5) a technique for exploring the activities that should occur in a school being planned, adding the perceived roles of staff. While better models are being created and made available, these heuristic approaches offer a useful way to help schcol personnel gain insights into their problems of management and planning and to find out the effects of various proposed actions on a "while you wait" basis. Samples of the computer printout for each of the examples described are included in the document. (MBM)
26.2
U.S. DEPARTMENT OF HEALTH.

EDUCATION \& WELFARE
DFFICE OF EOUCATION
THIS ODCUMENT HAS BEEN REPRO. DUCED EXACTLY AS RECEIVED FROM THE PERSDN OR ORGANIZATION ORIG. INATING IT. POINTS OF VIEW OR OPIN. IONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EOU. CATION PDSITION OR POLICY.

HEURISIICS: A STEP TOWARD GETTING THERE
G. Erriest Arıderson, Jr.

April 1, 1972
School of Education
Uriversity of Massachusetts Amherst, Nassachusetts

HbUnISTICS: A STap IOwARD GetTING There
heurris'tic: serving to discover or to stimulate investigation.

- Nebster's Collegiate Dictionary, 1943
heuris ics: techriques or procedures for varying sesch, choice, or discovery operitions to permit the progressive resolution of difficult problems; if the heuristlcs are applicable they will provide a short-cut to a goal; heuristic methods canrot guarantee solution to complex problems.
- rrarıger, R.L. Educatiorial Leadership. Intext, 1971. F. 30

A well-known paradox in bringing about systems changes is that you need your greatest expertise before you have had any real chance to acquire it. liodelire in Education faces a form of that paradox today. On the orie harid is the demarid for performance, accourtability and ever optimization. On the other nand are the claims that our models are ircomplete, hard to get data for, difficult to use, limited in applicaoility, focused on the wrong problems, urable to Frovide timely solutiors, prone to suggest solutions that are lnacceptable (or, at least, urpopular), and, occasionally, simply irrelevant. Yet, the modeling process in other fields of human frideavor has giverı results such as better mariagemerit, greater profits, snd improved transportation and commurication. In short, a rationale for decision-making based on a serious modeling effort has developed End gained acceptance.

Time will remedy some aspects of this situation. Better models will be developed and tested, and educators will gain understanding of now ard wher to use them. Wearwhile, education does have real and immediate problems. The purpose of this paper is to preserit several instances where techriques in the spirit of operations research but short of formal modeling have proved useful.

- arid other disciclires

Exhibit 1: The Operations Analysis-Information Systems context for educatioritl Decisior-making

Th \ni cortext for charging decision-making patterns in education based 0.1 Operations Research (Oceratiors Aralysis) and Information Systens is irndicited in txhibit 1 . This concept has beer propounded in detizil elsewhere (1). Its major features are:
ine computer has come irto educatior, albeit haltirisly and unevenly. iducatioril researchers can perform complex aralyses quickly; for admiristrators, afplications such as report cards, scheduling, and payroll car be performed readily, with more information stored and available thar ever before.

Operations Research philosophy and methods, if not its precise rechniques and formal models, orovide an avenue for relating יesearch ard discipline-oriented data to school operatine; data und decisions. The intert is literally to improve the operation of :schools by whatever mears has the greatest promise of "payoff."
jersoririel adequately trained to function according to this concept ure scarce. The best source of people for new roles may be the tduçtiorial researchers, who represent a near monoroly of quantitative ability arid whose usefulness is being cuestioned. However, trairied people may have trouble finding employment for many reasons, including present role perceptions in schools.

[^0]Wary problems that are difficult to answer in a formal Operations Research cortext can be zorroached meaningfully in an Informatior. Systers cortext.

Many examples of usinc existing computerized information
processirf techriques for more than the basic application they were desirfied for could be giver. For instance, a school board negotiating with the teachers association has used a payroll program with a proposed silary scale (out without printing the checks) to determine just what tnat salary scale would cost, assuming personnel stability.

The most widely used example of this potertial is school scheduling. Wher a computer is used, a school comronly makes one or two extra compiter runs, usualiy to "clear up" the data so the final run will have a minimum of problers for hand resolution later. But if a school wishes to do so, it may use the same data and computer programs in a "simulation" mode many more times for purposes of refiring the master schedule or tryirg out possible scheduling innovitions. Irielegant, perhaps; relatively inexpensive; effectlve, for schools that learn to manage their own data ard have some idea about what they want to do; arı, by usirg tris crude mar-machine interaction method, each scrool doirg so may decide or its own values at each step of the scinedulirg process.

Tnus, it is rot surprising that many of the "irstances" to follow s re really advarıced applications of irformation systems technolc $3 y$ to problems at hand. Tne ready availaility of timesharing computer terminals facilitates a mar-machine irteraction process that can oe surprisirvly efiective despite its heuristic ngture.

Our first example is a simcle one: the mandgement of a small Delchi exercise on a teletype time-sharing computer terminal (2).

[^1]Exhioits \mathcal{Z} ard 3 . show what happens on the first and secord rounds, respectively (3). The conputer is not doir. arything that could not be dorie almost as quickly by pencil and paper methods, except possibly for the mailing time to distant coints. In ar instructional setting, aside from saving the teacher some paperwork, the studerits are learring not orily trie Delphi techricue, but that a computer can be uṣed readily and effectively for such tasks. Tre fact that the task itself is easily urderstood apears to b:ild confidence in neophyte acministrators.

The rext example is a small budyeting model (4) whose rain use may be that of forcing project arid central office administritors to establish their priorities exolicitly. By interacting with the computer terminal, it is possiole to examine the results of various levels of furding and of changes of relative priorities very quickly in arriving it ar actual budget. The steps in this procedure are as follws:

Ea:h project manager defines for his project the desired money by line item (Exhibit 4a). Further, he defines more than one possible level of operation of the project, and the fraction of each line item budjet request reeded to operate at that level. Ir the example shown, Wir. Smith of the Instructional TV project (program) has requested \$151,000 for his project to operate at its maximum interded level. however, level 1 operatior can be maintained with 100% of the salaries, 50% of the eouipmert cost, 75% of the supplies cost, etc. 100% of the Supolies account is not used urtil level 4 operation is

[^2]```
IS THIS YOUR FIRST ROUND FOR THIS EXPERIMENT?
ANSWER EI THER YES OR NO.
?
YES
WHAT IS YOUR NAME? (IT WILL BE KEPT CONFIDENTIAL.)
YOUR NAME MUST BE FRDM }9\mathrm{ TO 16 CHARACTERS LONG
INCLUSIVE. USE BLANKS, IF NECESSARY.
?
G E ANDERSON
```

YOUR IDENTIFICATION NUMBER FOR THIS EXPERIMENT IS 2 PLEASE REMEMBER IT FOR FUTURE ROUNDS.

ALL GUESTIONS SHOULD BE ANSWERED ON A SCALE RANGING FROM A LOW OF 1 TO A HIGH OF 10. IF YOU WI SH ADDI TIONAL INFORMATION ON ANY QUESTION ANSWER 99.

REPLACE TEACHER TENURE WI TH TERM CONTRACTS. $1=S T R O N G L Y$ DI SAGREE $10=$ STRONGLY AGREE.

WHAT IS YOUR RESPONSE FOR THIS ROUND?
99
THE CONTRACTS COULD BE FOR LONGER PERIDDS AS A TEACHER GETS OLDER

HAT IS YOUR RESPONSE FOR THIS ROUND?
? W
2
DO YOU HAVE ANY COMMENTS TO SUPPORT YOUR RESPONSE? ALL COMMENTS ARE ALLOWED THREE TELETYPE LINES• IF A LINE IS NOT USED, ENTER A BLANK (SPACE), A COMMA, AND CARRIAGE RETURN. DO NOT USE COMMAS OTHERWISE. $?$ HARUARD REPORTS ITS GREAT ADUANCES TRADI TIONALLY MADE BY ? TENURED SECURE FACULTY WHO WILL BE AROUND TO LIVE WITH $?$
THEIR WORK AND ITS CONSEQUENCES.
DI SADVANTAGED STUDENTS SHOULD BE ADMITTED TO THIS UNI VERSITY UNDER DIFFERENT CRITERIA THAN FOR OTHER STUDENTS

WHAT IS YOUR RESPONSE FOR THIS ROUND?
$?$
7
DO YOU HAUE ANY COMMENTS TD SUPPORT YOUR RESPONSE?
7
NO
Exhibit 2: Kound 1, Delphi

```
WHAT IS YOUR ID NUMBER?
?
2
ALL QUESTIONS SHOULD BE ANSWERED ON A SCALE RANGING
FROM A LOW OF I TO A HIGH OF 10.
IF YOU WISH COMMENTS FROM PREVIOUS ROUND ON ANY QUESTION
ANSWER 99.
REPLACE TEACHER TENURE WI TH TERM CONTRACTS. I=STRONGLY DISAGREE
10=STRONGLY AGREE.
THE RESULTS OF ROUND 1 FOR this Question were
 THE HIGK SCORE WAS 3
 THE LOW SCORE WAS 2
 THE MEAN SCORE WAS 2.5
 WHAT IS YOUR RESPONSE FOR THIS ROUND?
?
99
HARUARD REPORTS ITS GREAT ADVANCES TRADI TIONALLY MADE BY
tenured SECuRE FACULTY WHO WILL bE AROUND TO LIVE WITH
THEIR WORK AND ITS CONSEQUENCES.
 WHAT IS YOUR RESPONSE FOR THIS ROUND?
?
2
DO YOUl HAUE ANY COMMENTS TO SUPPORT YOUR RESPONSE?
NO
DISADUANTAGED STUDENTS SHOULD BE ADMITTED TO THIS UNI UERSITY UNDER
DIFFEFENT CRITEFIA THAN FOR OTHER STUDENTS
THE RESULTS OF ROUND 1 FOR TEIS QUESTION WERE
 THE HIGH SCORE WAS 7
 THE LOW SCORE WAS 4
 THE MEAN SCORE WAS 5.5
 WHAT IS YOUR RESPONSE FOR THIS ROUND?
?
6
DO YOU HAUE ANY COMMENTS TO SUPPORT YOUR RESPONSE?
?
NO
```

Exhibit 3: Found 2 Delphi
reached.
The ceritral office meanwile is establishing its priority scneme (Exhlbit 4b) for all the roroprams arid projects. In effect, this is an ordered sequerice for the allocation of money until either everythiris is furided or the avilable money ruris out (usually the latter). Tris program rariking schedule indicates that $100 \%$ of the rormai compensation increase will be budgeted, ther $50 \%$ of tne progrim to strengthen departmerital administration, then $50 \%$ of the program to strensther instructional services, then $40 \%$ of the furds requested for instructional television, then $40 \%$ of the furds for practical substitutes. If level 1 is fully funded and money remairs, it will be assigned on level 2, to bring the propram to strengthen departmerital administration up to the $75 \%$ level, etc. Note that our instructionsi Television rroject will not reach $100 \%$ funding until level 5 is reached centrally.

The computer (teletype time-sharing terminal, again) takes the data from project managers and the central administration, plus tne authorized level of funds, ard produces the report shown in sxnibit 5. This report shows us that the available morey "ran out" at level 2 of the Strerigtinening Instructional Services program since the previous program is at the $75 \%$ level and the following program, Instructional Television, is at the $40 \%$ level. Further, we can see Witnin orogram 4, Instructional Television, that the money allocated "ran out" on the Supriles line, which is at $43 \%$ of budget, not $75 \%$ as was reouested for level 1 operation of that project.

Several "moves" are now possible:

- more money can be "found" somewhere to up the budget.
- cancel one or more projects and reallocate the money thus relased.
- adjust the relative priorities of projects, either by reordering them in the Frogram Nanking Schedule or by increasing the fraction to be funded early in the process.


# PROGRAM NANE: Instructional TV <br> DIRECTOR: 

## PROGRAR COST FRIORITIES

| Cost | Total |  | Priorities (levels) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Object | Cost | 1 | 2 | 3 | 4 | 5 |
| 11-11 |  |  |  |  |  |  |
| Salaries | 9000 | 1.00 |  |  |  |  |
| 21-17 |  |  |  |  |  |  |
| Equipmerio | 60000 | . 50 | . 75 | 1.00 |  |  |
| 26-23 |  |  |  |  |  |  |
| Supplies | 50000 | . 75 | . 90 | . 95 | 1.00 |  |
| 25-31 |  |  |  |  |  |  |
| Prof. Fees | 10000 | . 25 | . 50 | . 75 | . 90 | 1.00 |
| 25-94 |  |  |  |  |  |  |
| Repairs, ilat. | 10000 | .25 | . 50 | . 75 | . 90 | 1.00 |
| 25-39 |  |  |  |  |  |  |
| Contract Serv | 12000 | . 25 | . 50 | . 75 | . 90 | 1.00 |

PFOGRAM RANKING SCHEDULES


Exhibit 4b: Between Project Priorities (Central Office)

FUND - CITY BUDGET
FISCAL FERIOL - 1971
AUTHORIZED LEVEL OF FUNDS 2600000
TOTAL COST REQUIREMENTS OF PROGRAMS 3193800

| FFOGRAM 1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| OBJECT |  | RFQUIFFMENTS | ALLOCATED | FER CENT FUNDED |
| 11 | 1480000 | 1480000 | 100 |  |
| TOTAL | 1480000 | 1480000 | 100 |  |


| PROGRAM | 2 |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| DEJECT | FOUL FEMENTS | ALLOCATED | REF CENT FUNDED |  |
| 11 | 193500 | 160375 | 83 |  |
| 23 | 10000 | 5000 | 50 |  |
| 24 | 25000 | 12500 | 50 |  |
| 25 | 10000 | 5000 | 50 |  |
| 26 | 1000 | 500 | 50 | 50 |
| 29 | 10000 | 5000 | 50 |  |
| 31 | 5000 | 2500 | 75 |  |

PROGRAM 3
OBJECT

11
31
25
2.6

21
23
TOTAL
REQUII REM FATS
725000
70000
27000
250000
20000
40000
1132000

| ALLOCATED | PER CENT FUNDED |  |
| :--- | ---: | :--- |
| 547205 | 75 |  |
| 35000 | 50 |  |
| 13500 | 50 |  |
| 187500 | 75 |  |
| 5000 | 25 |  |
| 10000 | 25 |  |
| 798205 | 71 |  |

PROGRAM 4 OBJECT

11
31
26
25
TOTAL

| PROGRAM | 5 |
| :--- | :--- |
| OBJECT |  |
| 11 | REOUI REMENTS |
| 21 | 148000 |
| 23 |  |
| 25 | 3000 |
| 26 | 5000 |
| TOTAL | 8000 |
|  | 176300 |

Exhibit 5: Allocation of available dollars according to established priorities

- adjust furds ara priorities within projects to define a rew level of operation.

All of tnis could be done by pericil, paper, and dess calculator, out it wouldrit be dore soon erough to influence a meeting in progress. With the aid of the computer, it is possible to find out the effects of various proposed actions on a "while you wait" basis.

The next example is a school redistricting problem. The city in question had 3 high schools, 2 of them over capacity, with a very ureven distribution of ror-white and nor-academic students. The desired outcome was that studerts be better distributed among the hirch schools, in terms of total capacity and in terms of white-nonvite and acaderic-nonacademic balances. If possible, it was desired to reduce the distarices studerits had to travel to school.

Small areas within the city were defined, usually with the intent that all studerits within egch small area would go to one particular scrool. Scrool records gave an adequate indication of the rumber of staderits in each small area, and their racial and academic attributes. The school population in each small area was projected for 5 years based on the best available information, including poteritial urban renewal and changing racial composition of the city. Note that there is ro demographic model in either approach used to suggest districting; population projections are input data.

This problem could be (and was) formulated as a linear orogranming problem (Exhibit 6) (5). Solution of the linear programming problam provided the "best that could be done" within the existing constraints. As suggested ir the notes with exhibit 6, some small areas were in fact sflit between righ schools. Further, the students living across the
5. Wir. Fobert I'. hall o: jereral Learnirg Corporation was instrumerital in rurririf the linear programming solution to the problem.

School Districtirg Problem: Lirear Frogramming Formulation

Let $X_{i j}=$ numoer of studerits from area $i$ assigred to school $j$
$d_{i j}=$ distarice from area $i$ to school $j$
$c_{j}=$ capacity of school $j$
$s_{i}=$ number of studerts in area $i$
$a_{i}=$ per cert of students in area $i$ who are "academic"

$n_{i}=$ per cent of studerits in area 1 who are "non-white"
$\bar{r}=$ city-wide per cent of students who are "non-white"
Tinen
Minimize
Subject to

$$
\begin{aligned}
& <\sum x_{i j} d_{i j}^{2} \\
& \sum_{i} x_{i j} \leq c_{j} \\
& \sum_{j}^{n} x_{i j}=s_{i} \\
& \sum_{i} a_{i} x_{i j} \leq(\bar{a}+\epsilon) c_{j} \\
& \leq n_{i} x_{i j} \leq(\bar{n} \mid \epsilon) c_{j}
\end{aligned}
$$

weighted squared distarices
school capacity corstraint
all students assigried somewhere
academic balance
ron-white balance
where $E$ is an indicator of the amount of imbalance that can be tolerated.

## Notes:

If $\sum_{j} c_{j}<\sum_{i} s_{i}$ no feasible solution exists.
It is difficult to require that $X_{i j}$ be integer.
It is difficult to require that $X_{i j}=s_{i}$ or $X_{i j}=0$. Some areas
It is difficult to require that $X_{i j}$ for school $j$ be adjacent geographically.

Exhibit 6: Liriear Programming formulation of<br>School Districting Problem

street from ore high scrool were assigned to another, which would be dif'ficult to explain to tne puolic.

I'h: rext apiroach, considerlm, the reed for a politically viable set of districts, was to develop a time-sharing program that would allow school officials to assign any small area to any himh school they chose, and exarine the consequences (6). Exhibit 7 shows a typicil run of this computer program. Note that the program allows you to do several things:

- examirie the corsecuences of the data as it now is.
- examine the data about student population forecasts and change ary of it as desired.
- examirie the assimment of small areas to schools and change ary of trese assigimerits.
- charge all studerts ir a srall area to a new high school, or orily tne incoming f'resnmen. Ir the latter case, students already in a nigh school would not be moved.

As it turred out for this city, there simply was no redistricting plan that pleased very many people. The time-sharing con:puter program did allow the exploration of many alternatives, sometimes i ith various parerit ard community groups. The final decision was made vkere it probably belongs - in the political domain - but with the advantage of knowing probable consequences of several alternative plans and of reacting quickly to most new suggestions for redistricting.

The rapid growth of the concept of individualized instruction (ooer campus, indeperident study, oper classroom, individuallyprescribed instruction, etc.) and the concept of differentiated staffing (studert tutors, teacher aides, etc.) have caused charges in the way schools operate, accomparied by problems that are amerable to aralysis by simple Ocerations Research techniques.

[^3]OLD FILE NAME--REDI STRICT
READY
RUN
RE.DI STRICT 22:38 2/12/70
IF YOU WANT INSTRUCTIONS, TYPE '1'. OTHERWISE TYPE 'O'? 1
THERE ARE 5 SPECIFIC ACTIONS YOU CAN ASK THE COMPUTER TO TAKE

1. EVALUATE YOUR ALTERNATIVE
2. FORECAST THE HIGH SCHOOL POPULATION FOR AN AREA
3. TELL. YOU WHICH SCHOOL THE AREAS ARE ASSIGNED TO
4. CHANGE THE SCHOOL ASSI GNMENTS OF AREAS
5. CHANGE THE FORECASTED HIGH SCHOOL FOPULATION OF AN AREA

IN RESPONSE TO A QUESTION 'WHAT NEXT?' YOU TYPE A NUMBER $1,2,3,4,0 R 5$ TO INDICATE YOUR CHOICE. THEN TYPE A COMMA AND TWO MORE NUMBERS SEPARATED BY A COMMA. DEPENDING ON YOUR CHOICE, THE TWO NUMBERS MEAN THE FOLLOWING\&

CHOICE

| 1 - EVALUATION | YEAR E.G• '70' | GRADES AFFECTED |
| :--- | :--- | :--- |
| 2 - FORECAST | AREA NUMBER | 0 |
| 3 - ASSIGNMENTS | AREA NUMBER(LOWER) AREA NUMBER(UPPER) |  |
| 4 - CHANGE ASSIGNMENT | AREA NUMBER | SCHOOL NUMBER |
| 5 - CHANGE FORECAST | AREA NUMBER | YEAR |

WHAT NEXT? 1,70,1 (Asks for effect if orly 1 grade, new 9th, changed)
PROPOSED DISTRICTS 1970

| SCHOOL | STUDENTS | PCT CAPACI TY | PCT NONWHITE | ACADEMIC |
| :--- | :--- | :---: | :--- | :---: |
| FEENEY |  |  |  |  |
| WILSON | 2049 | 98 | 48.1 | 65.5 |
| XAVIER | 1388 | 112.2 | 35 | 60.2 |
| TOTAL | 5225 | 96.7 | 40.3 | 60.9 |
|  |  |  | 40.9 | 62.2 |

NUMBER OF GRADES AFFECTED =1
PCT STUDENTS AFFECTED $=6.2$
AVG MILES PER STUDENT $=1.17$
WHAT NEXT? S
PROGRAM HALTED

[^4]For exmpl:, studerts are traditionilly processed in ciassroom lots in educati'rr. Ir individualized situatiors, they may arrive in a relatively random marrier for "servicing" at such facilities as a computer tirminal, dial access terminal, study carrel, checinout of irstructio al materials, or even a teacher, counselor, or prescriber.

In ol mring finc these new educatioral ideas and their settings, queveirrs, car de a useful concept. It is usually irfeasible to have so mary studerit stations at each type of service facjlity that all studerits $c a r$ be accomodated at ary ore time for ron-iroup activities. Corversely. it is counter-productive to have so few facilities that studerts c rrmot mare use of them wher the educational philosophy of the scrool (the curriculum) says they should. Scarce resources terid to be tisrily scheduled to assure maximum utilization; unless great care is taken, such schedulirg tends to give each student a "tire slice" rather than an "accomplishment slice" of the resource. (For example, drill and practice sessions in arithmetic at computer terminals in one large city are giver to all students on the basis of 20 minutes twice a week, regardless of whether the studerit is so advariced ne is bepond arything the machine has to offer or really needs much more time to gain the desired level of competence.)

One potential "solution" is to examine carefully the interded useage of eich service facility irl terms of how often and how long exch tine for now mary students, ard then perform an elementary queueing aralysis to examire where the "trade-off" occurs between facility utilization ard studert waiting time. In some cases, it may be oossiole to make do with fewer of some kinds of service freilities. inore ofter, it will not be cossible to provide the proposed $: \in v e l$ of service with the number of service facilities available Flarners can trer make decisions about providing more service $f$ cilities, scheduling them so they will receive max mum
utilization, or taking steps to reduce the demard (fewer students, less frequert need, shorter contact).

Exnibit 8 shows ar exarrple of this kird of queueing analysis (7). From tne dest available data (whicr, admittedly, may de "shaky" data), it was estimated that a particular kirid of studerit station would receive about 20 studerits per hour, that each would require about 10 mirutes servicing or a ore-to-one basis, 10 stations would be available, arid one 9 -hour day at a tine would be considered. The queue program assumes a Poisson distribution of inter-arrival ard of service times. It samples one day with the specified 10 service stations, another one dyy with 9 service stations, on down to a final ore day sample with just 1 service station. Because of the rardonization built into the comnater program, it is desirable to rur the progrum more than once with a given set of parameters, as irdicated in Exhibit 8.

The results for this particular data irdicate that if you have fewer than 4 service stations, the expected number of students carmot de served, but the facility utilization is very high. If you have more than 5 or 6 , studerit waiting time is very short but facility atilization is low.

Typical of the use of such arralyses as queueing was the attempt to operatiorialize the idea that every studert should have free and easy access to his Couriselor-prescriber. If there is ore such persor ior 250 students, crises will get attention, but non-crisis

[^5]ARRIVAL RATE, STUDENTS FFR HOUK= 20.00 SERUICF RATE, MINUTES PFR STUDENT= 10.00 GFOUP SIZE= 1.00
STARTING NIMBFR OF SERVI CE. FACILITIES= 10 LENGTH OF DAY IN HOURS= 9.00
NUMBER OF DAYS IN SIMILATION= 1.00

| NUMBER OF | AUERAGE | AVERAGE | TOTAL |
| :---: | ---: | :--- | :--- |
| SERVICE | STUDENT | FACILITY | NUMBER |
| FACILITIES WAITING | USEAGE | STUDENTS |  |
|  | TIME |  | SERVICED |
| 10 | 0 | 40.91 | 179.00 |
| 9 | .03 | 38.52 | 195.00 |
| 8 | 0 | 33.50 | 156.00 |
| 7 | .01 | 44.51 | 188.00 |
| 6 | .23 | 50.35 | 165.00 |
| 5 | .62 | 59.15 | 168.00 |
| 4 | 7.06 | 86.39 | 173.00 |
| 3 | 36.32 | 96.45 | 154.00 |
| 2 | 102.02 | 93.47 | 103.00 |
| 1 | 212.83 | 99.86 | 48.00 |

ARRIVAL RATE, STUDENTS PER HOUR= 20.00 SERUICE RATE, MINUTES PER STUDENT= 10.00 GROUP SIZE= 1.00
STARTING NUMBER OF SERUICE FACILITIES= 10 LENGY:H OF DAY IN HOURS= 9.00 NUMBER OF DAYS IN SIMULATIONa 1.00

| NUMBER OF | AUERAGE | AUERAGE. | TOTAL |
| :--- | ---: | :--- | :--- |
| SERUICE | STUDENT | FACILITY | NUMBER |
| FACILITIES WAITING | USEAGE | STUDENTS |  |
|  | TIME |  | SERVICED |
| 10 | 0 | 25.66 | 142.00 |
| 9 | .01 | 40.19 | 180.00 |
| 8 | .02 | 42.43 | 179.00 |
| 7 | .01 | 45.66 | 174.00 |
| 6 | .02 | 52.04 | 165.00 |
| 5 | .07 | 49.32 | 151.00 |
| 4 | 11.97 | 90.46 | 177.00 |
| 3 | 13.87 | 82.55 | 139.00 |
| 2 | 114.80 | 97.95 | 108.00 |
| 1 | 201.58 | 99.10 | 48.00 |

contact will either not occur regularly for large rumbers of students or will be tightly scheduled some time in advance, either of which is contrary to the concept of free and easy access. Further thirkins, (translated as pressure from a "sinulation" team lor data) refinsd tre concept of "free and easy access" to $23 / 4$ student cortacts par week of gbout 6 minutes each. Two Courıelor-Prescriber types each available 5 nours a day, if utilized $100 \%$ of the time, could mara.je this amount of contact with 180 students. queueirig aralysis irdicated that 4 such people available half-time, but always irsterruntable. (translate as $50 \%$ average facility utilization), would keep the student waiting tine within reqsongble limits. There are other assumptions and further corsiderations, such as that of interchareseioility of "service facility" stations in the case of Courselor-Prescribers, and wing do these peovle do that is interrultable the remaining $50 \%$ of their time. This problem will recur Ir the Adult resorxces Flow Model.

Orie rori-computerized simulation technique should be mentioned in corrrection with the design of the school for which queueing arkilysis was done. Through tre simple expediert of creating a magretic board representing the space to scale, with magnetic scale furriture ard moveable partitions and firmly attached fixed soale walls, pillars, etc., it was rossible to show interested peonle what the proposed space might look like. Goirg a step further, the creation of 180 short plastis rods and 7 long plastic rod:; eich with a piece of magrietic tape on one end, to represent sturlents ard adults the space was to accomodate, allowed exploration of just how proposed activities irvolving numbers of students and adults would fit into the space. If the space is set up as intended aric orly 160 of the 180 rods representing students will fit, some additioral plarring reeds to be dorie. The l6lst "student",
for whom ro activity space can be found, represerits potential trouble in the real world.

The last "irstarce" is ar additional techricue for exploring the activities that should occur in a school being plarmed, adding the perceived roles of staff. The Adult Resources Flow Model takes as irput the following: (Exhibit 9)

- The titles, rumoers, cost, and hours of service for the eritire staff, including all nersonrel used in any way for instruction.
- For each type of staff, the approximate per cerit of time to be sperit or each defined type of work. If uprer anl lower limits are specified, they are considered inviolable. If just one per cert for a type of work is specified, it is treated as a mirimum. This input data results in hours available for types of work.
- For each type of work, the probable need for it based on the rumber of studerits, the rumber of faculty, occurrerices per week, range of time for each occurrerice, and type of distrioution of time within the scecified range:

1 - Uriform distribution. Ary lensth is as likely as ary other lerigth of time within the specified ranje.
2 - Normal distribution. Times near the center of the range are more probable thar either extreme.
3 - Exporiential decay distribution. Short times much more probable thar middle or long times. ( 8 )

The combiter ther samples the indicated work distributions the rumber of times rieeded to produce hours required (Exhibit 10) in a "sample" week. This may be matched against the hours available, and, where discrepancies exist, action taken to change job descriptions or the need for types of work.

Full details of the restures of the Adult Fesources Flow moci are beyond the scope of this paper (9). Several interesting
8. Axperierice at the Oakleaf School, Baldwiri-Whitehall School . istrict, the oilot school for Irdividually Frescribed Instruction, indicates a reed for constant conditioning of idults to make short, freouent coritacts with students. The Lorg coritact must oe the exception for the system to work.
9. Techrical documentation and detailed operating irastructions will be in a rerort to the U.S.Office of Education.

DATA FOR STAFF WORK, FLNT, 8-1-69
STUDENTS=700, FACULTY=35

| STAFF TYPE |  | NUMBER | COST | TOTAL | REG <br> HOURS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| 1 | TEACHER STAGE |  |  |  |  |

HOURS AVAILARLE FOR TYPES OF WORK
TYPE OF WORK

| 1 | COUNSELING, PRESCRI BING |
| :--- | :--- |
| 2 | PLANNING |
| 3 | TUTORING |
| 4 | GROUP INSTRUCTION |
| 8 | PARENTS \& COMMUNITY |
| 9 | IN SERUICE TRAINING |
| 10 | TESTING |
| 11 | SCORING / RECORDING |
| 12 | MATERIALS PREPARATION |
| 13 | SUPPORTING DUTIES |
| 14 | DISCIPLINE |
| 15 | SUPERVISING ACADEMIC ACTIVITY |

TOTALS
WORK DESCRI PTORS
WORK TYPE
DIST RANGE STU FAC CON CHG

| 1 | COUNSELING, PRESCRI BING |
| :--- | :--- |
| 2 | PLANNING |
| 3 | TUTORING |
| 4 | GRCUP INSTRUCTION |
| 8 | PAFENTS \& COMMUNITY |
| 9 | IN SERVICE TRAINING |
| 10 | TESTING |
| 11 | SCORING / RECORDING |
| 12 | MATERIALS PREPARATION |
| 13 | SUPPORTING DUTIES |
| 14 | DISCIPLINE |
| 15 | SUPERVISING ACADEMIC ACTIUITY |


| REGHRS | OVHRS | EXREGH | EXOVHR | MAXHRS |
| ---: | ---: | ---: | ---: | ---: |
| 184.0 | 0 | 0 | 0 | 184.0 |
| 74.0 | 0 | 108.0 | 0 | 182.0 |
| 372.2 | 0 | 0 | 0 | 372.2 |
| 188.8 | 0 | 0 | 0 | 188.8 |
| 11.6 | 0 | 23.2 | 0 | 34.8 |
| 70.0 | 0 | 0 | 0 | 70.0 |
| 152.2 | 0 | 26.6 | 0 | 178.8 |
| 111.0 | 0 | 10.0 | 0 | 121.0 |
| 42.0 | 0 | 84.4 | 0 | 126.4 |
| 86.0 | 0 | 98.0 | 0 | 184.0 |
| 0 | 0 | 18.0 | 0 | 18.0 |
| 133.0 | 0 | 57.0 | 0 | 190.0 |
| 1424.8 | 0 | 425.2 | 0 | 1850.0 |

DEMAND FOR WORK IN WEEK 1 STAFF WORK, FLNT, 8-1-69
WORK TYPE
O CCURS HOURS


WORK TYPE
1 COUNSELING. PRESCRIBING
2 PLANNING
3 TUTORING
4 GROUP INSTRUCTION
8 PARENTS + COMMUNITY
9 IN SERVICE TRAINING
10 TESTING
11 SCORING / RECORDING
12 MATERIALS PREPARATION
13 SUPPORTING DUTIES
14 DISCIPLINE
15 SUPERUISING ACADEMIC ACTIUI TY
TOTAL

OCCURS HOURS
1925 225.7
$175 \quad 127.6$
$1708 \quad 230.8$
$70 \quad 41.1$
$105 \quad 15.3$
$175 \quad 121.3$
297 152.5
$700 \quad 37.0$
$35 \quad 23 \cdot 1$
175 105.3
$280 \quad 28.0$
105 120.3
$1228 \cdot 0$

DO YOU WANT A NEW WEEK?
? NO

Exhibit l0: Results from Adule Resources Flow Nodel

onservations car se made from the sample run presented ir cxnioits
3 and 10 however:

- It is very easy to defirie much more work th't reeds to be dorie thar there is staf'f time to accomolish that woris. For the data preserted to be at all "feasible," it was riecessary to eliminate entirely work twpes 5, 6, and 7, and to drastically curtail staff attertion to discicline problems.
- There is stili insufficient staff time for courseling and prescribing, compared with the time hypothesized to be needed. This was ultimately resolved by allowing lower level staff members to spend time courseling and prescribing.
- Staff perception of arrount of time they should sperd in group instruction and of the amount of group instruction needed to carry out the intent of the school being planned are discrepant.

No claim is made that tnis model is particularly valid. Its usefulness might be summarized as iollows:

- Plarriers have beer forced to try to quantify some of the implicatiors of their riars, and, thereby, be somewnat more precise and detailed in their thinkirig.
- Major discrepancies between work thet should be done and staff time allocatior have been rointed out for further analysis. Corsequeritly, this model is classified with the "heuristics" rather tngn with formal modeling work.

To help schools plan for individualized curricula, additional models have been created as part of the Nodel Elemeritary Teacher Education Program at the Uriversity of Wassacrusetts(10). The EDSIM family of computerized models attempts at various levels of sophisticatior to aralyze a performance criterion orierted curriculum with the possibility of a student's passing a pre-test and needing 110 instruction, or needing one or more instructional alternatives before a post-test is passed. Probabilities associated with passing
10. For more information, see the Simulation Modeling section of A Feasjoility Study or the Nodel Elementary Teacher Education Progran (Phase II), Final Report, Contract No. OEC-0-9-310417-4040, Uriversity of Massachusetts. Available from Superintendent of Dociu.er.ts, U.S.Fovernment Fririting Office.
tests and selecting instructional alternatives, and various time and resource req:airements of these irstructional alternatives make up the input data. Output data includes time for students to comolete hyoothesized curriculz inder variolis circumstances, and level of resources reouired for reasonable student flows.

The EDSIM models represent serions model develooment work, and one $\partial f$ them has undergone extersive validation studies (ll). They are beyond the scope of this paper except to iridicate next steps oeyord he:xristics in the apolication of Operations Research thinking to plaming of new educational experiences for studerits.

In summary, we have seen a series of instances of trial and error, ouick and dirty, heuristic approaches to helcing schools aralyze $v$ rious rroblenis, each iricreasingly closer to the concepts of Operat ors Research. While better models are oeins created, tested, documented, and made widely available, and verhaps for a long time after that, neuristic aproaches such as these offer a useful way to help school people gain insights into their problems of marager: ert arıd plarring. We riay be well advised to help oring about a greater urder.standing ard use of these heuristic techniques. To cuote Robert fiayes:

```
"I believe that the greatest impact of the quantitative approach will not be in the area of problem solving, although it will have growing usefulness there. Its greatest impact will be on problem formulation: the way managers think a bout their problems - how they size them up, bring new insights to be ar or them, relate
```

11. Foley, wi. Wi. A Validatior Study of a Computer Simulation Nodel for an Individualized Curriculum. Ed.D. Thesis, University of Massachusetts, 1971. To be included in a report to the U.S. Office of Education.
tinem to other problems, communicate with other people about them, ard pather iriformation for analyzing them. In this serise, the results that "quarititative people" have produced are begirring to contribute in a really significant way to the art of manizement." (12)

Little mention $h=s$ been made of the problems of apolyirip, even simple reuristic tecraiques: lack of clear definition of goals, misurderstanding and mistrust or the part of school people, lack of $; 00 d$ data, unwillingress to make decision processes exolicit, and simple lack of technical skills to use such techriques, to rame a few. 'lhese proolems are part of the challenge in developing improved marizgenert and plannirg processes for education, the challenge we must accept if our efforts are to court in the long run.

[^6]
[^0]:    1. Andersor, G.上.,Jr. Operatiors Fesearch: A Missing Link. Educatioral Researcher, Vol. XXI, March, 1970. P. 1-3.
[^1]:    2. UMASS time-sharing system at the University of Massachusetts and Gerieral Electric Time-Sharing have been used for the se examples.
[^2]:    3. This particular exercise was constructed and programmed by Nir. Thomas J. Murray, doctoral candidate in the School of Business Administratior, Uriversity of Massachusetts, for a course in Decision-Makirg conducted by Dr. Kenan E. Sahin.
    4. inr. Jates C. Green of General Learning Corporation first developed tinis tecrifique aric trie associated computer programs for the model Senool ifvision of the Wasnirgton, D.C., Public Schools.
[^3]:    6. Nr. Robert T. liall and Nr. Janes C. Green of General Learning Corooration created and used the original version of this computer program.
[^4]:    Exhibit 7: School Districtirg by Computer

[^5]:    7. Worle, G.E., and Richards, T.C. Fort Lincoln New Town: Hand Simulation of Stage II of the First Facility. Unpublished report to Gerieral Learning Corporation, August, 1969. Every proposed studert service facility was subjected to this xind of aralysis. The computer program was created by Dr. Richards.
[^6]:    12. Renetzky, A., and Kaplan, P.A. Standard Educatior Almanac, 1969. Los Angeles: Academic Nedia, Irc., 1969. P. 108. (Quoted in Farmer, J. Why F.P.B.S. for Higher Education? Boulder: yestern Interstate Commission for Eigher Education, 1970. F. 21)
